TEL: +86 571 56623320    EMAIL: [email protected]

Cpg-Odns and Budesonide Act Synergistically to Improve Allergic Responses in Combined Allergic Rhinitis and Asthma Syndrome Induced by Chronic Exposur
SUNLONG BIOTECH / 2024-01-09
  • Author:Li, H. T., Chen, Z. G., Lin, Y. S., Liu, H., Ye, J., Zou, X. L., Wang, Y. H., Yang, H. L. & Zhang, T. T.

  • Periodical:Inflammation 41, 1304-1320 (2018)

  • Article source

The experimental model of combined allergic rhinitis and asthma syndrome (CARAS) has shown that CpG oligodeoxynucleotides (CpG-ODNs) are potential inhibitors of type 2 helper cell-driven inflammatory responses. Currently available CpG-ODNs modestly inhibit allergic responses in CARAS, while a combination strategy for upper airway treatment by co-administration of CpG-ODNs and glucocorticoids may show good efficacy. This study aimed to assess the therapeutic effects of CpG-ODNs combined with budesonide (BUD) on upper and lower-airway inflammation and remodeling in mice with CARAS induced by chronic exposure to ovalbumin (OVA), exploring the possible underlying molecular mechanisms. A BALB/c mouse model of chronic CARAS was established by systemic sensitization and repeated challenge with OVA. Treatment with CpG-ODNs or BUD by intranasal administration was started 1?h after OVA challenge. Then, nasal mucosa and lung tissues were fixed and stained for pathologic analysis. The resulting immunologic variables and TSLP-DC-OX40L axis parameters were evaluated. Both CpG-ODNs and BUD intranasal administration are effective on reducing Th2-type airway inflammation and tissue remodeling. Co-administration of CpG-ODNs and BUD was more effective than each monotherapy in attenuating upper and lower-airway inflammation as well as airway remodeling in chronic CARAS. Notably, combination of CpG-ODNs with BUD modulated the TSLP-DC-OX40L axis, as demonstrated by decreased TSLP production in the nose and lung, alongside decreased TSLPR and OX40L in DC. Intranasal co-administration of CpG-ODNs and BUD synergistically alleviates airway inflammation and tissue remodeling in experimental chronic CARAS, through shared cellular pathways, as a potent antagonist of the TSLP-DC-OX40L axis.

User Comment(Total0User Comment Num)

  • No comment
Total 0 records, divided into1 pages First Prev Next Last
Username: Anonymous user
E-mail:
Rank:
Content:
Verification code: captcha

Call us

+86 571 56623320

Address

Room 1-315, Kongle Changqing Building, No. 160 Guangye Road,Gongshu District, Hangzhou City, Zhejiang Province, China

Join Us with

Leave a message
* To protect against spam, please pass the CAPTCHA test below.