The launched hepatitis B vaccine could induce powerful antibodies, whereas it failed to improve potent cellular immune responses due to that the Th2-type response-induced aluminum adjuvant was adopted. Here, to target antigen-presenting cells under the epidermis and induce potent cellular and humoral immune responses, mannose-modified poly D,L-lactide-co-glycolic acid (PLGA) was synthesized and nanoparticle (MNP)-loaded hepatitis B surface antigen (HBsAg) protein was prepared. HBsAg could be slowly released and highly presented to lymphocytes which facilitated to produce long-lasting immunity based on characters of PLGA. In vitro uptake test results showed that MNPs could enhance internalization in bone marrow-derived dendritic cells (BMDCs) and RAW 264.7 cells. Subcutaneous delivery of MNPs into mice kept humoral immune and strengthened cellular immune responses. Experimental results indicated that MNPs showed significantly modified properties compared with parental PLGA nanoparticles. Thus, the obtained MNPs could be a promising vehicle for hepatitis B vaccine delivery.