The imbalance of Th17/Treg cells plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). Caveolin-1 (Cav-1) has been regarded as a potential critical regulatory protein in pathological mechanisms of chronic inflammatory respiratory diseases. Therefore, we investigated whether the loss of Cav-1 is involved in the homeostasis of Th17/Treg cells in COPD. We examined the expressions of plasma Cav-1 and circulating Th17, Treg cells, and the related cytokines in patients with COPD. Enzyme-linked immunosorbent assay (ELISA) analyses showed a significant reduction of plasma Cav-1 levels in patients with stable COPD (SCOPD) and acutely exacerbated COPD (AECOPD) compared to smokers without COPD. This loss was associated with an increase in frequency of Treg and decreased in frequency of Th17 cells. To further identify the role of Cav-1, we studied the effects of Cav-1 overexpression or downregulation on frequencies of Treg and Th17 cells in peripheral blood mononuclear cells (PBMCs) from subjects. Interestingly, small interfering RNA (siRNA) downregulation of Cav-1 was accompanied by an augmentation of Treg and reduction of Th17 expression. Together, our study demonstrated that the loss of Cav-1 contributed to the imbalance of Th17/Treg cells in patients with COPD.