AIM: Pilocytic astrocytomas (PAs) are a common adolescent malignancy. We evaluated the effects of the betaine stachydrine on human PA cells as well as its associated molecular mechanism(s). MATERIALS & METHODS: Various experiments assessing stachydrine's effects on the human PA cell line Res186 were performed. RESULTS & CONCLUSION: Stachydrine dose-dependently suppressed proliferation and colony formation in Res186 cells with no such effect on normal astrocytes. Stachydrine downregulated CXCR4 transcription through enhancing IκBα-based NF-κB inhibition. Stachydrine promoted apoptosis and cyclin D1/p27(Kip1)-associated G0/G1 phase arrest in a CXCR4/ERK- and CXCR4/Akt-dependent manner. Stachydrine suppressed MMP-associated migration and invasiveness via inhibiting CXCR4/Akt/MMP-9/2 and CXCR4/ERK/MMP-9/2 pathway activity. Stachydrine inhibits the viability, migration and invasiveness of human PA cells via inhibiting CXCR4/ERK and CXCR4/Akt signaling.