In this study, we investigated the combined use of cytokine-induced killer (CIK) cells and cyclosporine A (CsA) to treat a mouse model of aplastic anemia (AA). CIK cells were cultured and injected alone or in combination with CsA into mice that had previously been induced into AA by busulfan and mouse interferon-γ (IFN-γ). The CIK cell-treated group had a survival rate of 55%, which was similar to the 60% survival rate observed in the CsA-treated group. The combination group showed a survival rate as high as 90%, while none of the mice in the no-treatment group survived to the end of the experiment. The CIK cells produced multiple cytokines, including several hematopoietic growth factors, which could promote the expansion of mouse bone marrow mononuclear cells in vitro. CsA reduced the proportion of CD4(+) T cells and the level of IFN-γ. The combined CIK cell and CsA treatment exhibited the best curative effect, a finding that might be due to the influence of these factors on both hematopoiesis and immunity. These data suggest that the combination of CIK cells and immunosuppressive therapy might be a candidate therapy for AA in the future.