PURPOSE: To develop a liposome formulation incorporating antigen-presenting cells (APCs) membrane microdomains with enriched epitope/MHC complexes to evaluate the activities of these liposomes (RAFTsomes) to activate T cells and prime immune responses. METHODS: We isolated membrane microdomain structures that contained the epitope/MHC complexes from ovalbumin (OVA) primed dendritic cells (DCs), and reconstituted them on liposomes surface by detergent dialysis. The resulted RAFTsomes were purified by density gradient centrifugation. Their T cell activation functions were evaluated by IL-2 secreting and proliferation assays in vitro. In vivo immune responses and the protective effect against OVA expressing EG.7 tumor challenge were also examined. RESULTS: Membrane microdomains containing enriched epitope/MHC complexes can be reconstituted into liposomes with defined size and composition. The integrity and activities of these complexes after reconstitution were confirmed by in vitro T cell assays. OVA epitope loaded RAFTsomes injected in vivo resulted in high anti-OVA IgG production (predominantly IgG1). The immunized mice were protected from EG.7 tumor cell inoculation challenge. CONCLUSIONS: Based on these findings, we propose that RAFTsomes can be prepared with unique properties that may be used as an antigen delivery system for immunotherapeutic applications.