B7-H3, a recently discovered B7 family member, is documented as a regulator in the inflammatory response as well as T cell-mediated immune responses. In this paper, we find that patients with acute pancreatitis revealed overwhelming levels of serum soluble B7-H3 (sB7-H3) associated with the clinical outcomes. Furthermore, B7-H3 protein was marked increased in l-arginine-induced acute experimental pancreatitis. Anti-B7-H3 monoclonal antibody treatment attenuated the proinflammatory cytokine production, downregulated the activation of the NF-κB signaling pathway, and ameliorated the pancreas disruption in l-arginine-induced pancreatitis. In addition, although l-arginine alone failed to induce the production of proinflammatory cytokine and anti-B7-H3 mAb had no effect on the proinflammatory cytokine production of acinar cells, administration of anti-B7-H3 mAb in the coculture model of acinar cells and macrophages stimulated by l-arginine displayed the similar effects. On the whole, B7-H3 participates in the development of acute pancreatitis, and anti-B7-H3 monoclonal antibody ameliorates severity of acute experimental pancreatitis via attenuation of the inflammatory response.