TEL: +86 571 56623320    EMAIL: [email protected]

Biodegradable Nanocatalyst with Self-Supplying Fenton-like Ions and H<sub>2</sub>O<sub>2</sub> for Catalytic Cascade-Amplified Tumor Therapy
SUNLONG BIOTECH / 2024-01-09
    • Type: Hela cells

    • Author:Li W, Zhou X, Liu S, Zhou J, Ding H, Gai S, Li R, Zhong L, Jiang H, Yang P.

    • Periodical:ACS Appl Mater Interfaces. 2021 Nov 3;13(43):50760-50773.

    • Article source

    Therapeutic nanosystems triggered by a specific tumor microenvironment (TME) offer excellent safety and selectivity in the treatment of cancer by in situ conversion of a less toxic substance into effective anticarcinogens. However, the inherent antioxidant systems, hypoxic environment, and insufficient hydrogen peroxide (H2O2) in tumor cells severely limit their efficacy. Herein, a new strategy has been developed by loading the chemotherapy prodrug disulfiram (DSF) and coating glucose oxidase (GOD) on the surface of Cu/ZIF-8 nanospheres and finally encapsulating manganese dioxide (MnO2) nanoshells to achieve efficient DSF-based cancer chemotherapy and dual-enhanced chemodynamic therapy (CDT). In an acidic TME, the nanocatalyst can biodegrade rapidly and accelerate the release of internal active substances. The outer layer of MnO2 depletes glutathione (GSH) to destroy the reactive oxygen defensive mechanisms and achieves continuous oxygen generation, thus enhancing the catalytic efficiency of GOD to burst H2O2. Benefiting from the chelation reaction between the released Cu2+ and DSF, a large amount of cytotoxic CuET products is generated, and the Cu+ are concurrently released, thereby achieving efficient chemotherapy and satisfactory CDT efficacy. Furthermore, the release of Mn2+ can initiate magnetic resonance imaging signals for the tracking of the nanocatalyst.

User Comment(Total0User Comment Num)

  • No comment
Total 0 records, divided into1 pages First Prev Next Last
Username: Anonymous user
E-mail:
Rank:
Content:
Verification code: captcha

Call us

+86 571 56623320

Address

Room 1-315, Kongle Changqing Building, No. 160 Guangye Road,Gongshu District, Hangzhou City, Zhejiang Province, China

Join Us with

Leave a message
* To protect against spam, please pass the CAPTCHA test below.