

SL0982R

Product Name:	phospho-NFKB p65 (Ser536)
Chinese Name:	磷酸化The nucleus因子抗体
Alias:	 NF-kB p65 (phospho S536); p-NF-κB p65(Phospho-Ser536); RELA(phospho S536); NF kB P65; NF-kB p65; NFKBp65; NF-κBp65; p65 NF kappaB; p65 NFkB; NFKBp65; RELA; Transcription Factor p65; v rel avian reticuloendotheliosis viral oncogene homolog A (nuclear factor of kappa light polypeptide gene enhancer in B cells 3 (p65)); V Rel Avian Reticuloendotheliosis Viral Oncogene Homolog A; v rel reticuloendotheliosis viral oncogene homolog A (avian); v-rel reticuloendotheliosis viral oncogene homolog A (avian); v-rel reticuloendotheliosis viral oncogene homolog A; p65NFKB; Avian reticuloendotheliosis viral (v rel) oncogene homolog A; MGC131774; NFKB 3; NFKB3; Nuclear Factor NF Kappa B p65 Subunit; Nuclear factor of kappa light polypeptide gene enhancer in B cells 3; Nuclear Factor Of Kappa Light Polypeptide Gene Enhancer In B Cells; TF65_HUMAN.
文献引用 Pub ^l ∭ed ∶	Specific References(8) SL0982R has been referenced in 8 publications. [IF=2.12]Yan, Xuerui, et al. "Cyanidin-3-O-glucoside Attenuates Acute Lung Injury in Sepsis Rats." Journal of Surgical Research (2015).WB;Mouse. <u>PubMed:26152793</u>
	[IF=2.47]Zhao, Hongyu, et al. "Betulin attenuates lung and liver injuries in
	sepsis."International Immunopharmacology 30 (2016): 50-56.WB;Rat.
	PubMed:26644168
	[IF=2.08]Fu, Juanli, et al. "Tetrachlorobenzoquinone exhibits neurotoxicity by inducing
	inflammatory responses through ROS-mediated IKK/IkB/NF-kB
	signaling."Environmental Toxicology and Pharmacology (2016).WB;Rat.
	PubMed:26745386
	[IF=2.70]Zhao, Hongyu, et al. "Betulin attenuates kidney injury in septic rats through

inhibiting TLR4/NF-κB signaling pathway."Life Sciences (2016). WB;Rat .
PubMed:26656467
[IF=2.47]Zhang, Liang, et al. "Knockdown of placental growth factor (PLGF) mitigate
hyperoxia-induced acute lung injury in neonatal rats: Suppressive effects on NF κ B
signaling pathway." International Immunopharmacology 38 (2016): 167-174.WB;Rat.
PubMed:27280587
[IF=1.35]Gao, Wenyan, et al. "Indirubin ameliorates dextran sulfate sodium-induced
ulcerative colitis in mice through the inhibition of inflammation and the induction of
Foxp3-expressing regulatory T cells." Acta Histochemica (2016).WB;Mouse.
PubMed:27396532
[IF=0.98]Sun, Guodong, et al. "Esculentoside A ameliorates cecal ligation and
puncture-induced acute kidney injury in rats." Experimental Animals: 16-0102.WB;Rat
PubMed:28637971
[IF=3.11]Ge, Lingqing, et al. "Design and discovery of novel thiazole derivatives as
potential MMP inhibitors to protect against acute lung injury in sepsis rats via
attenuation of inflammation and apoptotic oxidative stress." RSC Advances7.52 (2017)
32909-32922.WB;Rat.
PubMed:0

Organism Species:	Rabbit
Clonality:	Polyclonal 5
React Species:	Human, Mouse, Rat, Chicken, Dog, Cow, Horse,
	WB=1:500-2000ELISA=1:500-1000Flow-Cyt=1µg /test
Applications:	not yet tested in other applications.
	optimal dilutions/concentrations should be determined by the end user.
Molecular weight:	61kDa
Cellular localization:	The nucleuscytoplasmic
Form:	Lyophilized or Liquid
Concentration:	1mg/ml
immunogoni	KLH conjugated Synthesised phosphopeptide derived from human NFKBp65 around
immunogen:	the phosphorylation site of Ser536:FS(p-S)IA
Lsotype:	IgG
Purification:	affinity purified by Protein A
Storage Buffer:	0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol.
	Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized
Storago	antibody is stable at room temperature for at least one month and for greater than a year
Storage:	when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of
	antibody the antibody is stable for at least two weeks at 2-4 °C.

PubMed:	PubMed
Product Detail:	NF-kappa-B is a ubiquitous transcription factor involved in several biological processes. It is held in the cytoplasm in an inactive state by specific inhibitors. Upon degradation of the inhibitor, NF-kappa-B moves to the nucleus and activates transcription of specific genes. NF-kappa-B is composed of NFKB1 or NFKB2 bound to either REL, RELA, or RELB. The most abundant form of NF-kappa-B is NFKB1 complexed with the product of this gene, RELA. Four transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Sep 2011].
	Function: NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B is phosphorylated by 1-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. NF-kappa-B heterodimeric p65-p50 and p65-c-Rel complexes are transcriptional activators. The NF-kappa-B p65-p65 complex appears to be involved in invasin-mediated activation of IL-8 expression. The inhibitory effect of 1-kappa-B upon NF-kappa-B the cytoplasm is exerted primarily through the interaction with p65. p65 shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-kappa-B complex. Associates with chromatin at the NF-kappa-B promoter region via association with DDX1.
	Subunit: Component of the NF-kappa-B p65-p50 complex. Component of the NF-kappa-B p65-c- Rel complex. Homodimer; component of the NF-kappa-B p65-p65 complex. Component of the NF-kappa-B p65-p52 complex. May interact with ETHE1. Binds AES and TLE1. Interacts with TP53BP2. Binds to and is phosphorylated by the activated form of either RPS6KA4 or RPS6KA5. Interacts with ING4 and this interaction may be indirect. Interacts with CARM1, USP48 and UNC5CL. Interacts with IRAK1BP1 (By similarity). Interacts with NFKBID (By similarity). Interacts with NFKBIA. Interacts with GSK3B. Interacts with NFKBIB (By similarity). Interacts with NFKBIE. Interacts with NFKBIZ. Interacts with EHMT1 (via ANK repeats) (By similarity). Part of a 70-90 kDa complex at least consisting of CHUK, IKBKB, NFKBIA, RELA, IKBKAP and MAP3K14. Interacts with HDAC3; HDAC3 mediates

the deacetylation of RELA. Interacts with HDAC1; the interaction requires nonphosphorylated RELA. Interacts with CBP; the interaction requires phosphorylated RELA. Interacts (phosphorylated at 'Thr-254') with PIN1; the interaction inhibits p65 binding to NFKBIA. Interacts with SOCS1. Interacts with UXT. Interacts with MTDH and PHF11. Interacts with ARRB2. Interacts with human respiratory syncytial virus (HRSV) protein M2-1. Interacts with NFKBIA (when phosphorylated), the interaction is direct; phosphorylated NFKBIA is part of a SCF(BTRC)-like complex lacking CUL1. Interacts with RNF25. Interacts (via C-terminus) with DDX1. Interacts with UFL1 and COMMD1. Interacts with BRMS1; this promotes deacetylation of 'Lys-310'. Interacts with NOTCH2 (By similarity). Directly interacts with MEN1; this interaction represses NFKB-mediated transactivation. Interacts with AKIP1, which promotes the phosphorylation and nuclear retention of RELA. Interacts (via the RHD) with GFI1; the interaction, after bacterial lipopolysaccharide (LPS) stimulation, inhibits the transcriptional activity by interfering with the DNA-binding activity to target gene promoter DNA.

Subcellular Location:

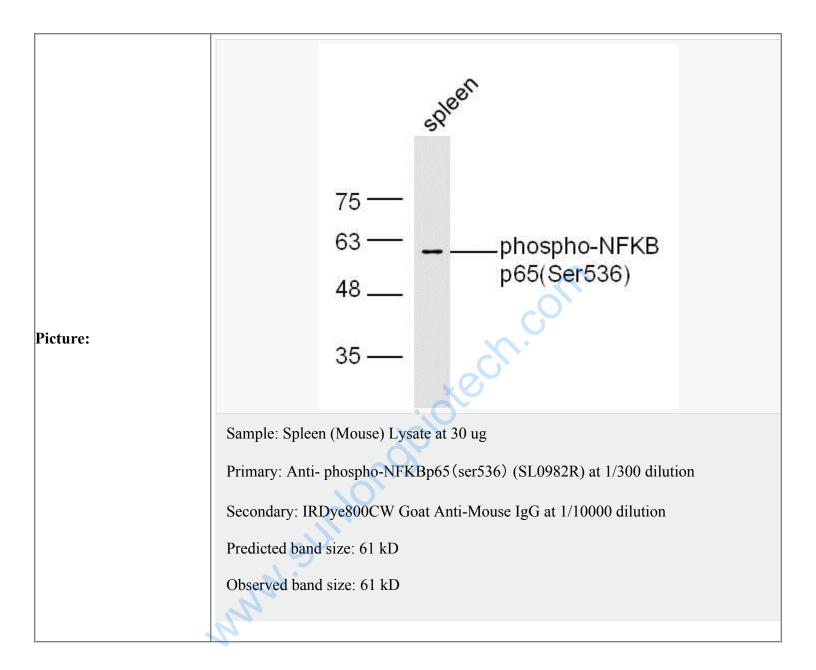
Nucleus. Cytoplasm. Note=Colocalized with DDX1 in the nucleus upon TNF-alpha induction. Nuclear, but also found in the cytoplasm in an inactive form complexed to an inhibitor (I-kappa-B). Colocalizes with GFI1 in the nucleus after LPS stimulation.

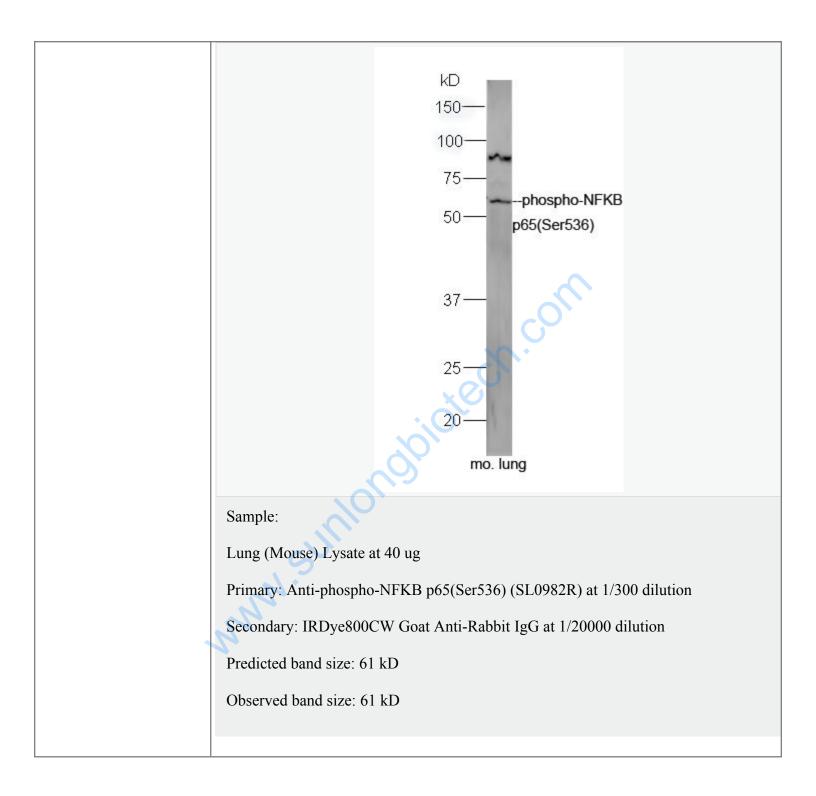
Post-translational modifications:

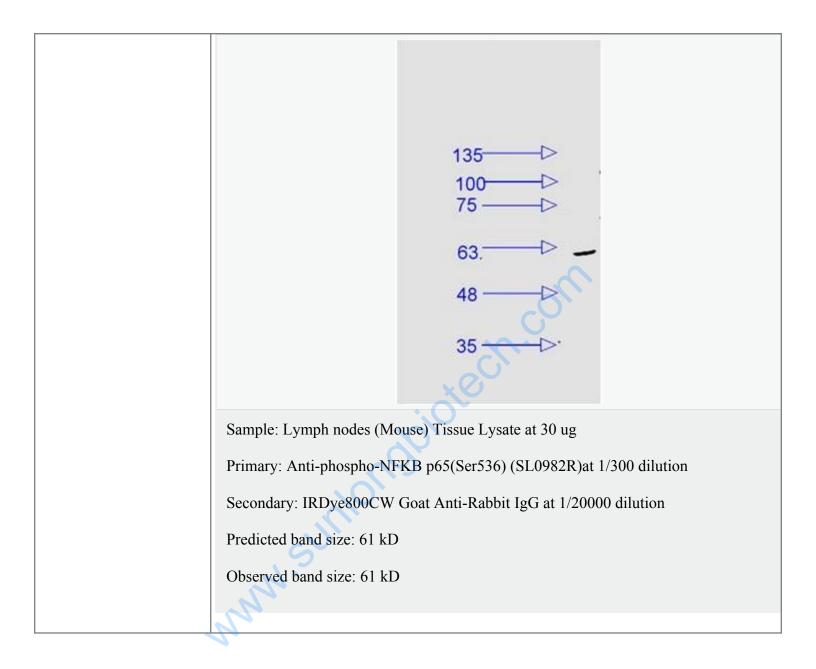
Ubiquitinated, leading to its proteasomal degradation. Degradation is required for termination of NF-kappa-B response.

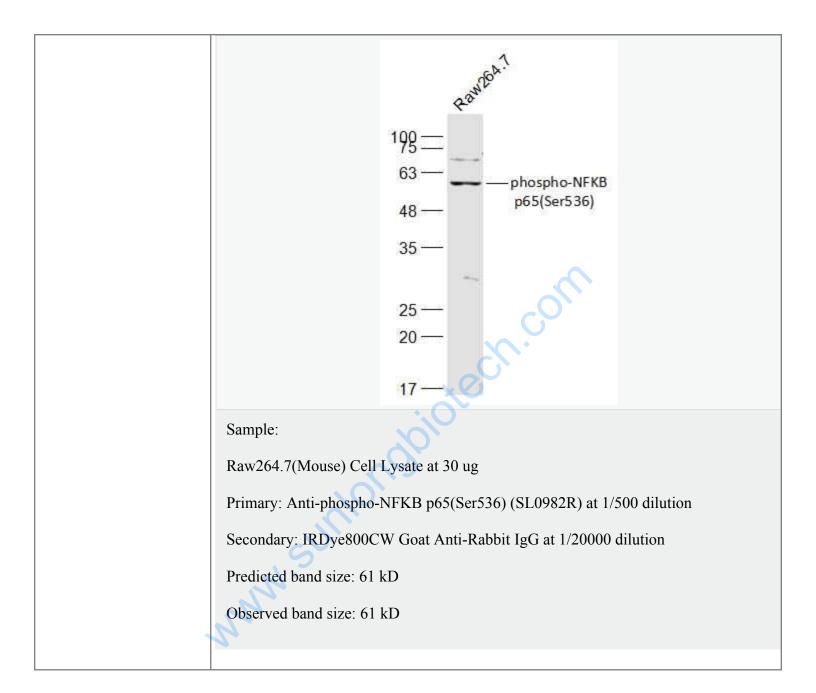
Monomethylated at Lys-310 by SETD6. Monomethylation at Lys-310 is recognized by the ANK repeats of EHMT1 and promotes the formation of repressed chromatin at target genes, leading to down-regulation of NF-kappa-B transcription factor activity. Phosphorylation at Ser-311 disrupts the interaction with EHMT1 without preventing monomethylation at Lys-310 and relieves the repression of target genes. Phosphorylation at Ser-311 disrupts the interaction with EHMT1 and promotes transcription factor activity. Phosphorylation on Ser-536 stimulates acetylation on Lys-310 and interaction with CBP; the phosphorylated and acetylated forms show enhanced transcriptional activity. Phosphorylation at Ser-276 by RPS6KA4 and RPS6KA5 promotes its transactivation and transcriptional activities.

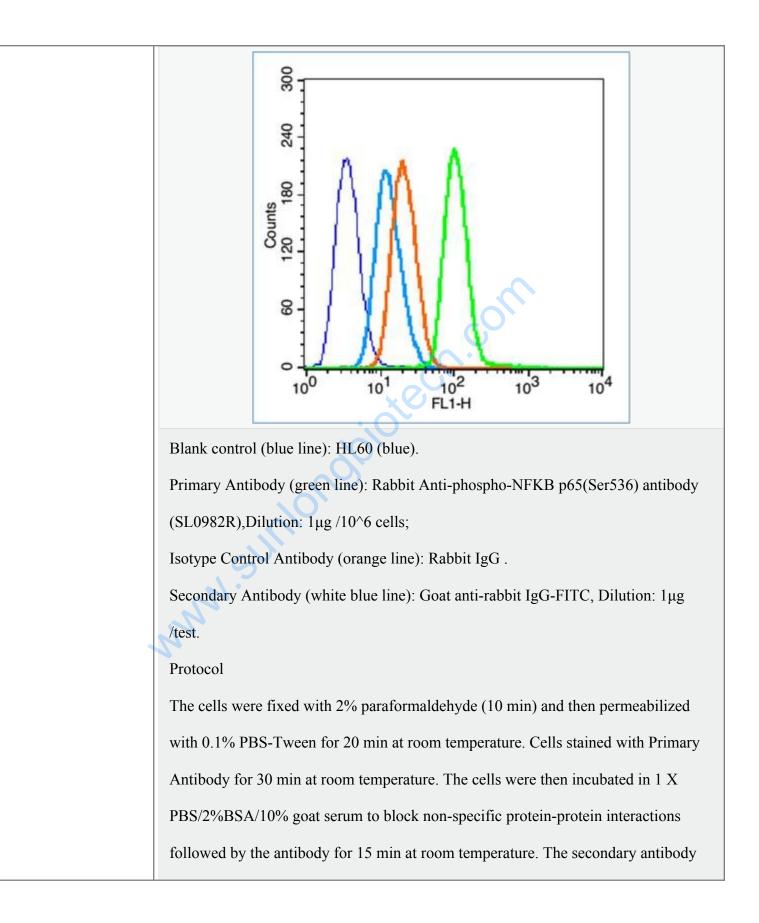
Reversibly acetylated; the acetylation seems to be mediated by CBP, the deacetylation by HDAC3 and SIRT2. Acetylation at Lys-122 enhances DNA binding and impairs association with NFKBIA. Acetylation at Lys-310 is required for full transcriptional activity in the absence of effects on DNA binding and NFKBIA association. Acetylation can also lower DNA-binding and results in nuclear export. Interaction with BRMS1 promotes deacetylation of Lys-310. Lys-310 is deacetylated by SIRT2.

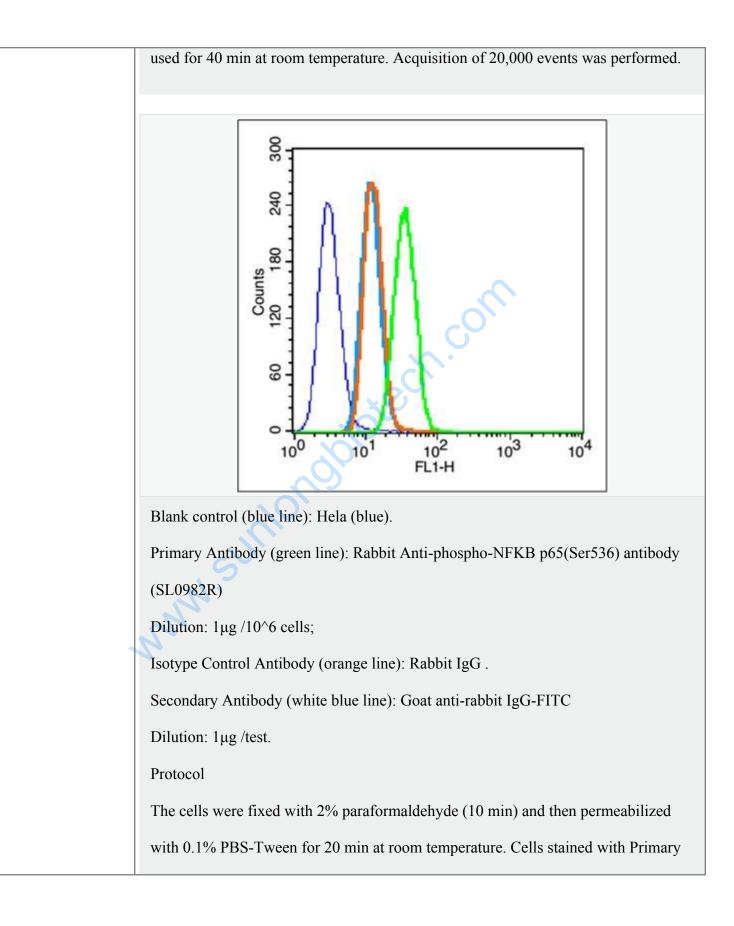

S-nitrosylation of Cys-38 inactivates the enzyme activity.


Sulfhydration at Cys-38 mediates the anti-apoptotic activity by promoting the interaction with RPS3 and activating the transcription factor activity.


Sumoylation by PIAS3 negatively regulates DNA-bound activated NF-kappa-B.


Similarity:


Contains 1 RHD (Rel-like) domain.
SWISS: Q04206
Gene ID: 5970
Database links:
Entrez Gene: 5970Human
Entrez Gene: 19697Mouse
Entrez Gene: 309165Rat
Entrez Gene: 309165Rat Omim: 164014Human SwissProt: Q04206Human SwissProt: Q04207Mouse Unigene: 502875Human
SwissProt: Q04206Human
SwissProt: Q04207Mouse
Unigene: 502875Human
Unigene: 249966Mouse
Unigene: 19480Rat
Important Note: This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications.
transcriptional regulatory factor(Transcriptin Regulators) NF-кВр65是一种重要的转录因子, NF-
kBp65可激活参与炎症、细胞增殖、Apoptosis等基因的调节,影响着细胞的凋亡,同时影响着Tumour细胞对细胞毒性药物及离子辐射的敏感性。ras基因诱导的致癌突变作用需NFkB的活化,提示NFkB在致癌发生方面可能起一定作用;另有文献报道,在乳腺癌、非小细胞性肺癌、甲状腺癌、T或Blymphocyte白血病及病毒诱变导致的Tumour等人类Tumour中,NFkB活化或表达。
NF- кB可以保护细胞免受Tumour坏死因子以及电离辐射等引起的凋亡作用,而抑制NF kB的表达可以增加TNF等引起的Apoptosis,以及增加化疗及放疗对Tumour细胞的 敏感性。



Antibody for 30 min at room temperature. The cells were then incubated in 1 X
PBS/2%BSA/10% goat serum to block non-specific protein-protein interactions
followed by the antibody for 15 min at room temperature. The secondary antibody
used for 40 min at room temperature. Acquisition of 20,000 events was performed.

www.sunionobiotech.com