TEL: +86 571 56623320    EMAIL: [email protected]

Rabbit Anti-TLR4 antibody
Rabbit Anti-TLR4 antibody
TLR-4; TLR 4; ARMD10; CD 284; CD284; CD284 antigen; Homolog of Drosophila toll; hTol; Toll (Drosophila) homolog; TOLL; Toll Endotoxin Hyporesponsiveness; Toll like receptor 4; Toll like receptor 4 precursor; TLR4_HUMAN.
Total
(Vip priceV)
Regular members: $334.4
  • Save more [Favourable] 30% discount
  • NO.:SL1021R
    Clonality:Polyclonal
    Immunogen Species:Rabbit
    React Species:Human,Rat,(predicted: Mouse,Dog,Pig,Cow,Sheep,)
    Applications:WB ELISA IHC-P IHC-F Flow-Cyt ICC IF
    concentration:1mg/ml
  • Goods click count:70
  • Product Spec:
  • Quantity: - +
  • Limit points for buying:0 Points
  • Manual
  • Add to cart Inquiry Add to favorite
View History [Clear]

Details

Product Name TLR4
Chinese Name Toll样受体4(CD284)抗体
Alias TLR-4; TLR 4; ARMD10; CD 284; CD284; CD284 antigen; Homolog of Drosophila toll; hTol; Toll (Drosophila) homolog; TOLL; Toll Endotoxin Hyporesponsiveness; Toll like receptor 4; Toll like receptor 4 precursor; TLR4_HUMAN.  
literatures
Specific References  (54)     |     SL1021R has been referenced in 54 publications.
[IF=8.96] Harasymowicz, Natalia S., et al. "Regional Differences Between Perisynovial and Infrapatellar Adipose Tissue Depots and Their Response to Class II and III Obesity in Patients with OA." Arthritis & Rheumatology (2017).  IHC-P ;  Human.  
[IF=8.039] Yifan Zhu. et al. Discovery of Selective P2Y6R Antagonists with High Affinity and In Vivo Efficacy for Inflammatory Disease Therapy. J MED CHEM. 2023;XXXX(XXX):XXX-XXX  WB ;  Mouse.  
[IF=7.727] Xue Wang. et al. Engineered liposomes targeting the gut–CNS Axis for comprehensive therapy of spinal cord injury. J Control Release. 2021 Mar;331:390  WB,IHC ;  Mouse.  
[IF=6.78] Mona F. El-Azab. et al. A novel role of Nano selenium and sildenafil on streptozotocin-induced diabetic nephropathy in rats by modulation of inflammatory, oxidative, and apoptotic pathways. LIFE SCI. 2022 Aug;303:120691  IHC ;  Rat.  
[IF=6.344] Sun, Lizhong. et al. Fibroblast membrane-camouflaged nanoparticles for inflammation treatment in the early stage. Int J Oral Sci. 2021 Nov;13(1):1-14  FC ;  Human.  
[IF=6.317] Baoming Tian. et al. Ameliorating effects of Hericium erinaceus polysaccharides on intestinal barrier injury in immunocompromised mice induced by cyclophosphamide. FOOD FUNCT. 2023 Feb;:  IF ;  Mouse.  
[IF=6.286] Jianhao Yang. et al. Serum amyloid A regulates TLR2/4-mediated IFN-β signaling pathway against Marek's disease virus. VIRUS RES. 2023 Jan;:199044  WB ;  Chicken.  
[IF=6.064] Irene Palenca. et al. N-Palmitoyl-D-Glucosamine Inhibits TLR-4/NLRP3 and Improves DNBS-Induced Colon Inflammation through a PPAR-α-Dependent Mechanism. BIOMOLECULES. 2022 Aug;12(8):1163  IF ;  Mouse.  
[IF=5.656] Winter J et al. Adenine Nucleotide Translocase 1 Expression is Coupled to the HSP27-Mediated TLR4 Signaling in Cardiomyocytes. Cells. 2019 Dec 6;8(12). pii: E1588.  WB ;  Rat.  
[IF=5.4] Kawakita, Fumihiro, et al. "Effects of Toll-Like Receptor 4 Antagonists Against Cerebral Vasospasm After Experimental Subarachnoid Hemorrhage in Mice." Molecular Neurobiology (2016): 1-10.  WB ;  Mouse.  
[IF=5.295] Xiahong Tang. et al. Hypoxic preconditioned mesenchymal stem cells ameliorate rat brain injury after cardiopulmonary resuscitation by suppressing neuronal pyroptosis. JOURNAL OF CELLULAR AND MOLECULAR MEDICINE. 2023 May;:  WB ;  Rat.  
[IF=5.1] Xu, Wei, et al. "Glaucocalyxin B Alleviates Lipopolysaccharide-Induced Parkinson’s Disease by Inhibiting TLR/NF-κB and Activating Nrf2/HO-1 Pathway." Cellular Physiology and Biochemistry 44.6 (2017): 2091-2104.  WB ;  Rat.  
[IF=5.085] Xianmei Liu. et al. Tropomodulin1 Expression Increases Upon Maturation in Dendritic Cells and Promotes Their Maturation and Immune Functions. Front Immunol. 2020; 11: 587441  WB ;  Mouse.  
[IF=5.076] Liu L et al. Deficiency of Tenascin-C Alleviates Neuronal Apoptosis and Neuroinflammation After Experimental Subarachnoid Hemorrhage in Mice. Mol Neurobiol. 2018 Nov;55(11):8346-8354.  WB ;  Mouse.  
[IF=4.868] Li C et al. UFL1 Alleviates Lipopolysaccharide-Induced Cell Damage and Inflammation via Regulation of the TLR4/NF-κB Pathway in Bovine Mammary Epithelial Cells. Oxid Med Cell Longev. 2019 Feb 10;2019:6505373.  WB ;  bovine.  
[IF=4.868] Wang G et al. Protective Effect of Methane-Rich Saline on Acetic Acid-Induced Ulcerative Colitis via Blockingthe TLR4/NF-κB/MAPK Pathway and Promoting IL-10/JAK1/STAT3-Mediated Anti-inflammatory Response. Oxid Med Cell Longev. 2019 Apr 28;2019:7850324.  WB ;  Mouse.  
[IF=4.868] Li Z et al. Methane-Rich Saline Counteracts Cholestasis-Induced Liver Damage via Regulating the TLR4/NF-κB/NLRP3 Inflammasome Pathway. Oxidative Medicine and Cellular Longevity, 2019, 1–13.  IHF ;  Rat.  
[IF=4.784] Zhan Q et al. Structural Characterization and Immunomodulatory Activity of a Novel Acid Polysaccharide Isolated from the Pulp of Rosa laevigata Michx Fruit. Int J Biol Macromol. 2019 Nov 12. pii: S0141-8130(19)37108-9.  Other ;  Mouse.  
[IF=4.52] Namisaki, Tadashi, et al. "Beneficial effects of combined ursodeoxycholic acid and angiotensin-II type 1 receptor blocker on hepatic fibrogenesis in a rat model of nonalcoholic steatohepatitis." Journal of Gastroenterology (2015): 1-11.  IHC-P ;  Rat.  
[IF=4.486] Shun Huang. et al. Design, Synthesis, and Activity Study of Cinnamic Acid Derivatives as Potent Antineuroinflammatory Agents. Acs Chem Neurosci. 2021;12(3):419–429  WB ;  Mouse.  
[IF=4.225] Peng L et al. Madecassoside Protects Against LPS-Induced Acute Lung Injury via Inhibiting TLR4/NF-κB Activation and Blood-Air Barrier Permeability. Front Pharmacol. 2020 Jun 5;11:807.  WB ;  Mouse.  
[IF=4.225]   WB ;  mouse.  
[IF=4.187] Jiajia Wang. et al. TAK-242 ameliorates DSS-induced colitis by regulating the gut microbiota and the JAK2/STAT3 signaling pathway. Microb Cell Fact. 2020 Dec;19(1):1-17  WB ;  Mouse.  
[IF=4.147]   WB ;  mouse.  
[IF=4.125] Baoming Tian. et al. Modulating effects of Hericium erinaceus polysaccharides on the immune response by regulating gut microbiota in cyclophosphamide-treated mice. J SCI FOOD AGR. 2022 Dec;:  IF ;  Mouse.  
[IF=4.059] Ruiyue Sun. et al. Effects of Bacillus subtilis natto JLCC513 on gut microbiota and intestinal barrier function in obese rats. J APPL MICROBIOL. 2022 Sep;:  WB ;  Rat.  
[IF=3.94] Kulhankova, Katarina, et al. "The Superantigen Toxic Shock Syndrome Toxin-1 Alters Human Aortic Endothelial Cell Function." Infection and immunity (2017): IAI-00848.  FCM ;  Human.  
[IF=3.913] Canan Eroğlu Güneş. et al. Glycoside oleandrin downregulates toll-like receptor pathway genes and associated miRNAs in human melanoma cells. GENE. 2022 Aug;:146805  WB ;  Human.  
[IF=3.69] Yuhua Li. et al. Jiaolong capsule protects SD rats against 2,4,6-trinitrobenzene sulfonic acid induced colitis. J Ethnopharmacol. 2021 Apr;269:113716  WB,IF,IHC ;  Rat.  
[IF=3.69]   WB ;  rat.  
Research Area Cardiovascular  immunology  Signal transduction  The cell membrane受体  
Immunogen Species Rabbit
Clonality Polyclonal
React Species Human, Rat,  (predicted: Mouse, Dog, Pig, Cow, Sheep, )
Applications WB=1:500-2000 ELISA=1:5000-10000 IHC-P=1:100-500 IHC-F=1:100-500 Flow-Cyt=2ug/Test ICC=1:100 IF=1:100-500 (Paraffin sections need antigen repair)
not yet tested in other applications.
optimal dilutions/concentrations should be determined by the end user.
Theoretical molecular weight 90kDa
Detection molecular weight 110 kDa
Cellular localization cytoplasmic The cell membrane 
Form Liquid
Concentration 1mg/ml
immunogen KLH conjugated synthetic peptide derived from rat TLR4: 751-835/835 <Cytoplasmic>
Lsotype IgG
Purification affinity purified by Protein A
Buffer Solution 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol.
Storage Shipped at 4℃. Store at -20 °C for one year. Avoid repeated freeze/thaw cycles.
Attention This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications.
PubMed PubMed
Product Detail The protein encoded by this gene is a member of the Toll-like receptor (TLR) family which plays a fundamental role in pathogen recognition and activation of innate immunity. TLRs are highly conserved from Drosophila to humans and share structural and functional similarities. They recognize pathogen-associated molecular patterns that are expressed on infectious agents, and mediate the production of cytokines necessary for the development of effective immunity. The various TLRs exhibit different patterns of expression. In silico studies have found a particularly strong binding of surface TLR4 with the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus disease-2019 (COVID-19). This receptor has also been implicated in signal transduction events induced by lipopolysaccharide (LPS) found in most gram-negative bacteria. Mutations in this gene have been associated with differences in LPS responsiveness, and with susceptibility to age-related macular degeneration. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2020]

Function:
Cooperates with LY96 and CD14 to mediate the innate immune response to bacterial lipopolysaccharide (LPS). Acts via MYD88, TIRAP and TRAF6, leading to NF-kappa-B activation, cytokine secretion and the inflammatory response. Also involved in LPS-independent inflammatory responses triggered by Ni(2+). These responses require non-conserved histidines and are, therefore, species-specific.

Subcellular Location:
Membrane; Single-pass type I membrane protein.

Tissue Specificity:
Highly expressed in placenta, spleen and peripheral blood leukocytes. Detected in monocytes, macrophages, dendritic cells and several types of T-cells.

Post-translational modifications:
N-glycosylated. Glycosylation of Asn-526 and Asn-575 seems to be necessary for the expression of TLR4 on the cell surface and the LPS-response. Likewise, mutants lacking two or more of the other N-glycosylation sites were deficient in interaction with LPS.

DISEASE:
Genetic variation in TLR4 is associated with age-related macular degeneration type 10 (ARMD10) [MIM:611488]. ARMD is a multifactorial eye disease and the most common cause of irreversible vision loss in the developed world. In most patients, the disease is manifest as ophthalmoscopically visible yellowish accumulations of protein and lipid that lie beneath the retinal pigment epithelium and within an elastin-containing structure known as Bruch membrane.

Similarity:
Belongs to the Toll-like receptor family.
Contains 18 LRR (leucine-rich) repeats.
Contains 1 LRRCT domain.
Contains 1 TIR domain.

SWISS:
Q9QUK6

Gene ID:
7099

Database links:

Entrez Gene: 7099 Human

Entrez Gene: 21898 Mouse

Entrez Gene: 29260 Rat

SwissProt: O00206 Human

SwissProt: Q9QUK6 Mouse

SwissProt: Q9QX05 Rat

Unigene: 174312 Human

Unigene: 38049 Mouse



Toll样受体4(TLR4)通过激活天然免疫,参与特异性免疫应答的启动, Toll样受体4(TLR4)作为一种重要跨膜Signal transduction受体参与了内毒素诱发炎症反应的病理过程,对其调控机制的研究日益受到关注.
Product Picture
Sample:
Lane 1: Human MDA-MB-231 cell lysates
Lane 2: Human HUVEC cell lysates
Lane 3: Human HL-60 cell lysates
Primary: Anti-TLR4 (SL1021R) at 1/1000 dilution
Secondary: IRDye800CW Goat Anti-Rabbit IgG at 1/20000 dilution
Predicted band size: 90 kDa
Observed band size: 120 kDa
Paraformaldehyde-fixed, paraffin embedded (Human esophageal cancer); Antigen retrieval by boiling in sodium citrate buffer (pH6.0) for 15min; Block endogenous peroxidase by 3% hydrogen peroxide for 20 minutes; Blocking buffer (normal goat serum) at 37°C for 30min; Antibody incubation with (TLR4) Polyclonal Antibody, Unconjugated (SL1021R) at 1:200 overnight at 4°C, followed by operating according to SP Kit(Rabbit) (sp-0023) instructionsand DAB staining.
Tissue/cell: rat heart tissue; 4% Paraformaldehyde-fixed and paraffin-embedded;
Antigen retrieval: citrate buffer ( 0.01M, pH 6.0 ), Boiling bathing for 15min; Block endogenous peroxidase by 3% Hydrogen peroxide for 30min; Blocking buffer (normal goat serum,C-0005) at 37℃ for 20 min;
Incubation: Anti-TLR4/CD284 Polyclonal Antibody, Unconjugated(SL1021R) 1:200, overnight at 4°C, followed by conjugation to the secondary antibody(SP-0023) and DAB(C-0010) staining
Image submitted by One World Lab validation program. HL60 and MCF-7 cells were stained with rabbit polyclonal antibody against TLR4 with two dilutions (1:100 and 1:250). 2nd antibody without primary antibody was used as control included here.
Blank control:K562.
Primary Antibody (green line): Rabbit Anti-TLR4 antibody (SL1021R)
Dilution: 0.5ug/Test;
Secondary Antibody (white blue line) : Goat anti-rabbit IgG-AF488
Dilution: 0.5ug/Test.
Isotype control(orange line):Normal Rabbit IgG
Protocol
The cells were incubated in 5%BSA to block non-specific protein-protein interactions for 30 min at room temperature .Cells stained with Primary Antibody for 30 min at room temperature. The secondary antibody used for 40 min at room temperature. Acquisition of 20,000 events was performed.
Blank control: Raw264.7.
Primary Antibody (green line): Rabbit Anti-TLR4 antibody (SL1021R)
Dilution: 2μg /10^6 cells;
Isotype Control Antibody (orange line): Rabbit IgG .
Secondary Antibody : Goat anti-rabbit IgG-AF488
Dilution: 1μg /test.
Protocol
The cells were fixed with 4% PFA (10min at room temperature)and then permeabilized with 0.1% PBST for 20 min at at room temperature. The cells were then incubated in 5%BSA to block non-specific protein-protein interactions for 30 min at room temperature .Cells stained with Primary Antibody for 30 min at room temperature.The secondary antibody used for 40 min at room temperature.Acquisition of 20,000 events was performed.

Bought notes(bought amounts latest0)

No one bought this product
Total 0 records, divided into1 pages First Prev Next Last

User Comment(Total0User Comment Num)

  • No comment
Total 0 records, divided into1 pages First Prev Next Last
Username: Anonymous user
E-mail:
Rank:
Content:
Verification code: captcha

Call us

+86 571 56623320

Address

Room 1-315, Kongle Changqing Building, No. 160 Guangye Road,Gongshu District, Hangzhou City, Zhejiang Province, China

Join Us with

Leave a message
* To protect against spam, please pass the CAPTCHA test below.